Site icon BioInformant

European Society of Cardiology (ESC) Congress Presentation Reveals Results From Pre-Clinical Study Using CardioCell’s Stem Cells for Acute Myocardial Infarction

Results From Pre-Clinical Study Using CardioCell’s Stem Cells for Acute Myocardial Infarction (AMI)

CardioCell Mesenchymal Stem Cells

Data Indicate Administering Ischemia-Tolerant Mesenchymal Stem Cells (itMSCs) Intravenously Improves Cardiac Function Following an AMI

ROME, ITALY – EUROPEAN SOCIETY OF CARDIOLOGY CONGRESS 2016 – Aug. 29, 2016 – Study sponsor CardioCell LLC, a global biotechnology company that uses allogeneic stem cells for cardiovascular indications, announces data from its pre-clinical study “Mesenchymal stem cells grown under chronic hypoxia traffic to regions of myocardial infarction, suppress splenic natural killer cells, and attenuate adverse remodeling in mice with large acute MI” at the European Society of Cardiology (ESC) Congress.

Paper Co-Author Dr. Michael Lipinski, ‎Interventional Cardiologist at MedStar Washington Hospital Center, presents the study that was designed in collaboration with Drs. Dror Luger, Research Scientist at Washington Hospital Center and Stephen Epstein, Director, Translational and Vascular Biology Research at MedStar Heart and Vascular Institute, Chair of CardioCell’s Scientific Advisory Board and Member of CardioCell’s Heart Failure Advisory Board.

Pre-clinical results using a murine model show that intravenous (IV) injection of CardioCell’s ischemia-tolerant mesenchymal stem cells (itMSCs) improve cardiac function following an acute myocardial infarction (AMI) by:

In separate experiments, antibody-induced reduction in NK cells led to the same beneficial myocardial effects, demonstrating the itMSC-induced NK cell decrease plays a causal role in the observed beneficial myocardial effects produced by itMSCs.

“Since itMSCs secrete factors that have marked anti-inflammatory effects, we designed a study to determine if intravenously administered itMSCs can improve cardiac function following an AMI and, if so, whether such improvement is partially mediated by systemic anti-inflammatory activities,” says Dr. Stephen Epstein, Director, Translational and Vascular Biology Research at MedStar Heart and Vascular Institute. “The study impressively demonstrates the validity of these concepts. IV itMSC administration indeed improves cardiac function, and the itMSCs achieve this – at least, in part, – by their anti-inflammatory effects and abilities to decrease NK cells. These findings can profoundly impact future strategies for treating patients with AMI.”

Here is a summary of the methodology and results:

Stem cells are commonly thought to improve cardiac outcomes by myocardial regeneration or other direct effects from stem cells engrafting themselves in the myocardium. Thus, the concept is that the greater the number of myocardial engrafted stem cells, the better. Since IV itMSC delivery results in very low numbers of cells engrafting in damaged myocardium, catheter- or surgical-based stem cell delivery has been – with rare exception – the sole delivery strategy tested in clinical trials.

The hypotheses explored in this study are predicated on very different paradigms. Compelling evidence suggests that adult stem cells do not lead to myocardial regeneration and that excessive immune or inflammatory responses are one of the key mechanisms that cause progressive myocardial deterioration in AMI patients. This study tested the validity of two hypotheses:

  1. Intravenously administered itMSCs grown under chronic hypoxic conditions improve myocardial function and adverse remodeling in a murine AMI model.
  2. If functional benefit occurs, itMSC-induced systemic anti-inflammatory effects play an important mechanistic role.

Both hypotheses were proven to be valid.

Only CardioCell’s therapies feature itMSCs, which are exclusively licensed from CardioCell’s parent company Stemedica. Unlike MSCs grown under normoxic conditions, Stemedica’s bone-marrow-derived, allogeneic itMSCs are grown under hypoxic conditions. In vivo experiments demonstrate cells that are exposed to hypoxic conditions show greater homing and engraftment than cells grown under normoxic conditions. Compared to MSCs manufactured under normal oxygen condition, itMSCs secrete higher levels of growth factors and other important proteins associated with neoangiogenesis and healing.

About CardioCell LLC

Founded in San Diego, California, in 2013, CardioCell LLC is a global biotechnology company that explores therapeutic applications of unique, patented, ischemia-tolerant mesenchymal stem cells manufactured under cGMP conditions. CardioCell is a subsidiary of Stemedica Cell Technologies Inc., a global biotechnology company that manufactures adult allogeneic stem cells. The company’s technology is based on more than 30 years of research and clinical experience conducted by scientists and physicians in the United States, Europe and the former Soviet Union. CardioCell therapies offer a unique, proprietary technology based on the expansion of cells in constant hypoxia. The company has an exclusive, worldwide license from Stemedica to explore therapeutic indications for unmet cardiovascular needs, such as acute myocardial infarction, chronic heart failure and peripheral artery disease. For more information, visitwww.stemcardiocell.com.

About Stemedica Cell Technologies Inc.

Stemedica Cell Technologies Inc. is a global biopharmaceutical company that manufactures best-in-class allogeneic adult stem cells and stem cell factors. The company is a government licensed manufacturer of cGMP, clinical-grade stem cells currently used in US-based clinical trials for acute myocardial infarction, chronic heart failure, cutaneous photoaging, ischemic stroke, Alzheimer’s disease and traumatic brain injury. Stemedica’s products are also used on a worldwide basis by research institutions and hospitals for pre-clinical and clinical (human) trials. Stemedica is currently developing additional clinical trials for other medical indications using adult, allogeneic stems cell under the auspices of the FDA and other international regulatory institutions. The company is headquartered in San Diego, California, and can be found online at www.stemedica.com.

All media inquiries:

Kimberly Stoddard
The Townsend Team
+1 415.806.5793
kimberly@townsendteam.com

Rate this post
Exit mobile version