TABLE OF CONTENTS

1. REPORT OVERVIEW
 1.1 Statement of the Report
 1.2 Executive Summary

2. INTRODUCTION
 2.1 Discovery of iPSCs
 2.2 Barriers in iPSC Application
 2.3 Timeline and Cost of iPSC Development
 2.4 Current Status of iPSCs Industry
 2.4.1 Share of iPSC-based Research within the Overall Stem Cell Industry
 2.4.2 Major Focuses of iPSC Companies
 2.4.3 Commercially Available iPSC-Derived Cell Types
 2.4.4 Relative Use of iPSC-Derived Cell Types in Toxicology Testing Assays
 2.4.5 Toxicology/Safety Testing Assays using iPSC-Derived Cell Types
 2.5 Currently Available iPSC Technologies
 2.6 Advantages and Limitations of iPSCs Technology

3. HISTORY OF INDUCED PLURIPOTENT STEM CELLS (iPSCS)
 3.1 First iPSC generation from Mouse Fibroblasts, 2006
 3.2 First Human iPSC Generation, 2007
 3.3 Creation of CiRA, 2010
 3.4 First High-Throughput screening using iPSCs, 2012
 3.5 First iPSCs Clinical Trial Approved in Japan, 2013
 3.6 The First iPSC-RPE Cell Sheet Transplantation for AMD, 2014
 3.7 EBiSC Founded, 2014
 3.8 First Clinical Trial using Allogeneic iPSCs for AMD, 2017
 3.9 Clinical Trials for Parkinson's disease using Allogeneic iPSCs, 2018
 3.10 Commercial iPSC Plant SMaRT Established, 2018
 3.11 First iPSC Therapy Center in Japan, 2019

4. RESEARCH PUBLICATIONS ON iPSCS
 4.1 Categories of Research Publications
 4.2 Percent Share of Published Articles by Disease Type
 4.3 Number of Articles by Country
5. IPSCs: Patent Landscape
5.1 Timeline and Status of Patents
5.2 Patent Filing Destinations
5.2.1 Patent Applicant’s Origin
5.2.2 Top Ten Global Patent Applicants
5.2.3 Collaborating Applicants of Patents
5.3 Patent Application Trends in iPSC Preparation Technologies
5.4 Patent Application Trends in iPSC Differentiation Technologies
5.5 Patent Application Trends in Disease-Specific Cell Technologies

6. Clinical Trials Involving iPSCs
6.1 Current Clinical Trials Landscape
6.1.1 Clinical Trials Involving iPSCs by Major Diseases
6.1.2 Clinical Trials Involving iPSCs by Country

7. Funding for iPSCs
7.1 Value of NIH Funding for iPSCs
7.1.1 NIH’s Intended Funding Through its Component Organizations in 2020
7.1.2 NIH Funding for Select Universities for iPSC Studies
7.2 CIRM Funding for iPSCs

8. Generation of Induced Pluripotent Stem Cells: An Overview
8.1 Reprogramming Factors
8.1.1 Pluripotency-Associated Transcription Factors
8.1.2 Different Cell Sources and Different Combinations of Factors
8.1.3 Delivery of Reprogramming Factors
8.1.4 Integrative Delivery Systems
8.1.4.1 Integrative Viral Vectors
8.1.4.2 Integrative Non-Viral Vectors
8.1.5 Non-Integrative Delivery Systems
8.1.5.1 Non-Integrative Viral Vectors
8.1.5.2 Non-Integrative Non-Viral Delivery
8.2 Overview of Four Key Methods of Gene Delivery
8.3 Comparative Effectiveness of Different Vector Types
8.4 Genome Editing Technologies in iPSCs Generation
9. HUMAN iPSC BANKING
9.1 Cell Sources for iPSCs Banking
9.2 Reprogramming methods used in iPSC Banking
9.2.1 Factors used in reprogramming by Different Banks
9.3 Workflow in iPSC Banks
9.4 Existing iPSC Banks
9.4.1 California Institute for Regenerative Medicine (CIRM)
9.4.1.1 CIRM iPSC Repository
9.4.1.2 Key Partnerships Supporting CIRM’s iPSC Repository
9.4.2 Regenerative Medicine Program (RMP)
9.4.2.1 Research Grade iPSC Lines for Orphan and Rare Diseases from RMP
9.4.2.2 RMP’s Stem Cell Translation Laboratory (SCTL)
9.4.3 Center for iPS Cell Research and Application (CiRA)
9.4.3.1 FiT: Facility for iPS Cell Therapy
9.4.4 European Bank for Induced Pluripotent Stem Cells (EBiPC)
9.4.5 Korean Society for Cell Biology (KSCB)
9.4.6 Human Induced Pluripotent Stem Cell Initiative (HipSci)
9.4.7 RIKEN - BioResource Research Center (BRC)
9.4.8 Taiwan Human Disease iPSC Consortium
9.4.9 WiCell

10. BIOMEDICAL APPLICATIONS OF iPSCS
10.1 iPSCs in Basic Research
10.1.1 Understanding Cell Fate Control
10.1.2 Cell Rejuvenation
10.1.3 Studying Pluripotency
10.1.4 Tissue and Organ Development and Physiology
10.1.5 Generation of Human Gametes from iPSCs
10.1.6 Providers of iPSC-Related Services for Researchers
10.2 iPSCs in Drug Discovery
10.2.1 Drug Discovery for Cardiovascular Disease using iPSCs
10.2.2 Drug Discovery for Neurological and Neuropsychiatric Diseases
10.2.3 Drug Discovery for Rare Diseases using iPSCs
10.3 iPSCs in Toxicology Studies
10.3.1 Relative Use of iPSC-Derived Cell Types within Toxicity Testing
10.4 iPSCs in Disease Modeling
10.4.1 Cardiovascular Diseases Modeled with iPSCs
10.4.2 Percent Share Utilization of iPSCs for Cardiovascular Disease Modeling
10.4.3 Proportion of iPSC Sources in Cardiac Studies
10.4.4 Proportion of Vector Types used in Reprogramming
10.4.5 Proportion of Differentiated Cardiomyocytes used in Disease Modeling
10.4.6 iPSC-Derived Organoids for Modeling Development and Disease
10.4.7 Modeling Liver Diseases using iPSC-derived Hepatocytes
10.4.8 iPSCs in Neurodegenerative Disease Modeling
10.4.9 Cancer-Derived iPSCs
10.5 iPSCs within Cell-Based Therapies
10.5.1 Ongoing Clinical Trials using iPSCs in Cell Therapy
10.5.1.1 Clinical Trials for AMD
10.5.1.2 Autologous iPSC-RPE for AMD
10.5.1.3 Allogeneic iPSC-RPE for AMD
10.5.1.4 iPSC-Derived Dopaminergic Neurons for Parkinson’s disease
10.5.1.5 iPSC-Derived NK Cells for Solid Cancers
10.5.1.6 iPSC-derived Cells for GvHD
10.5.1.7 iPSC-derived Cells for Spinal Cord Injury
10.5.1.8 iPSC-derived Cardiomyocytes for Ischemic Cardiomyopathy
10.5.2 Leaders in iPSC-Based Cell Therapies

11. OTHER NOVEL APPLICATIONS OF iPSCS
11.1 iPSCs in Tissue Engineering
11.1.1 3D Bioprinting Techniques
11.1.2 Biomaterials
11.1.3 3D Bioprinting Strategies
11.1.4 Bioprinting Undifferentiated iPSCs
11.1.5 Bioprinting iPSC-Differentiated Cells
11.2 iPSCs in Animal Conservation
11.2.1 iPSC Lines for the Preservation of Endangered Species of Animals
11.2.2 iPSCs in Wildlife Conservation
11.3 iPSCs and Cultured Meat
11.3.1 Funding Raised by Cultured Meat Companies
11.3.4 Global Market for Cultured Meat

12. DEAL-MAKING WITHIN THE iPSC SECTOR
12.1 License Agreement between FUJIFILM Cellular Dynamics and Sana
12.2 Century Therapeutics Closes $160 Million Series C Financing
12.3 Bluerock Gains Access to Ncardia’s iPSCs-derived Cardiomyocytes
12.4 Fate Therapeutics’ Deal with Janssen Biotech
12.5 Century Therapeutics Acquires Empirica Therapeutics
12.6 $250 Million Raised by Century Therapeutics
12.7 BlueRock Therapeutics Launched with $225 Million
12.8 Collaboration between Allogene Therapeutics and Notch Therapeutics
12.9 Acquisition of Semma Therapeutics by Vertex Therapeutics
12.10 Evotec’s Extended Collaboration with BMS
12.11 Licensing Agreement between Allele Biotechnology and Astellas
12.12 Codevelopment Agreement between Allele & SCM Lifesciences
12.13 Fate Therapeutics Signs $100 Million Deal with Janssen
12.14 Allele’s Deal with Alpine Biotherapeutics
12.15 Editas and BlueRock’s Development Agreement

13. MARKET OVERVIEW
13.1 Global Market for iPSCs by Geography
13.2 Global Market for iPSCs by Technology
13.3 Global Market for iPSCs by Biomedical Application
13.4 Global Market for iPSCs by Cell Types
13.5 Market Drivers
13.6 Market Restraints
13.6.1 Economic Issues
13.6.2 Genomic Instability
13.6.3 Immunogenicity
13.6.4 Biobanking of iPSCs

14. COMPANY PROFILES
14.1 Addgene, Inc.
14.1.1 Viral Plasmids
14.2 Aleph Farms
14.3 Allele Biotechnology and Pharmaceuticals, Inc.
14.3.1 iPSC Reprogramming and Differentiation
14.4 AMS Biotechnology Europe, Ltd. (AMSBIO)
14.4.1 Services
14.4.2 Products
14.4.3 Corneal Epithelial Cells Cultured in StemFit in Clinical Trials
14.5 ALSTEM, INC.
14.5.1 Products
14.5.2 Services
14.6 Applied Biological Materials, Inc. (ABM)
14.6.1 Gene Expression Vectors and Viruses
14.7 Applied StemCell, Inc.
14.7.1 Services & Products
14.8 American Type Culture Collection (ATCC)
14.8.1 Product
14.9 Applied StemCell (ASC), Inc.
14.9.1 Products
14.10 Aruna Bio, Inc.
14.10.1 Program in Stroke
14.10.2 Exosomes as Therapeutics
14.11 Aspen Neuroscience, Inc.
14.11.1 Technology
14.12 Axol Bioscience, Ltd.
14.12.1 iPSC-derived Cells
14.12.2 Disease Models
14.12.3 Primary Cells
14.12.4 Media & Reagents
14.12.5 Services
14.13 Beckman Coulter Life Sciences
14.13.1 Cell Counters, Sizers and Media Analyzers
14.14 BD Biosciences
14.14.1 Products
14.15 BioCat GmbH
14.15.1 Products & Services
14.16 BlueRock Therapeutics
14.16.1 CELL + GENE Platform
14.17 BrainXell
14.17.1 Products
14.18 Cellaria
14.18.1 Product
14.19 Cell Biolabs, Inc.
14.19.1 Products
14.20 CellGenix GmbH
14.20.1 Products
14.21 Cell Signaling Technology
14.21.1 Products
14.22 Cellular Engineering Technologies (CET)
14.22.1 iPS Cell Lines
14.23.1 Products
14.24 Censo Biotechnologies, Ltd.
14.24.1 Human iPSC Reprogramming Services
14.24.2 iPSC Gene Editing Services
14.24.3 iPSC Target Validation and Assay Services
14.25 Century Therapeutics, LLC
14.25.1 Allogeneic Immune Cell Therapy
14.26 CiRA
14.26.1 Collaborations
14.27 Corning, Inc.
14.27.1 Products
14.28 Creative Bioarray
14.28.1 Products
14.29 Cynata Therapeutics Ltd.
14.29.1 Cymerus MSCs
14.30 Cytovia Therapeutics
14.30.1 iPSC CAR NK Cells
14.31 DefiniGEN
14.31.1 OptiDIFF iPSC Platform
14.31.2 Service
14.31.3 Patient-Derived Custom Cell Lines
14.31.4 Hepatocytes WT
14.31.5 Hepatocyte A1ATD
14.31.6 Hepatocyte GSD1a
14.31.7 Hepatocyte NAFLD
14.31.8 Hepatocyte FH
14.31.9 Pancreatic WT
14.31.10 Pancreatic MODY3
14.32 Evotec SE
14.32.1 iPSC-Based Drug Discovery Platform
14.33 Fate Therapeutics, Inc.
14.33.1 iPSC Platform
14.33.2 Collaboration with ONO Pharmaceutical Co., Ltd.
14.33.3 Collaboration with Memorial Sloan-Kettering Cancer Center
14.33.4 Collaboration with University of California, San Diego
14.33.5 Collaboration with Oslo University Hospital
14.34 FUJIFILM Cellular Dynamics, Inc.
14.34.1 iCell Products
14.34.2 MyCell Products
14.34.3 FCDI’s Partners & Providers
14.34.4 Groundbreaking Cellular Therapy Applications
14.34.5 New Paradigm for Drug Discovery
14.34.6 FCDI & Stem Cell Banking
14.35 GeneCopoeia, Inc.
14.35.1 Products & Services
14.36 GenTarget, Inc.
14.36.1 Products
14.36.2 Services
14.37 Heartseed, Inc.
14.37.1 Technology
14.38 InvivoGen
14.38.1 Products
14.39 iPS Portal, Inc.
14.39.1 Services
14.40 iXCells Biotechnologies
14.40.1 Products
14.41 Lonza Group, Ltd.
14.41.1 Nucleofector Technology
14.42 Merck/Sigma Aldrich
14.42.1 Products
14.43 Megakaryon Corporation
14.43.1 Technology
14.44 Metrion Biosciences, Ltd.
14.44.1 Cardiac Translational Assays
14.45 Miltenyi Biotec B.V. & Co. KG
14.45.1 Cell Manufacturing Platform
14.46 Ncardia
14.46.1 iPSC Solutions for Cell Therapy
14.46.2 Drug Safety and Toxicity Services
14.47 NeuCyte
14.47.1 Technology
14.48 Newcells Biotech
14.48.1 Expertise
14.48.2 iPSC Reprogramming Services
14.48.3 Assay Products and Services
14.48.4 Assay Development
14.49 PeproTech
14.49.1 Products
14.50 Phenocell SAS
14.50.1 Human iPSCs
14.51 Platelet BioGenesis
14.51.1 Technology
14.52 Pluricell Biotech
14.52.1 Pluricell’s Projects
14.53 PromoCell GmbH
14.53.1 Products
14.54 Qiagen
14.54.1 Single Cell Analysis
14.55 R&D Systems, Inc.
14.55.1 Products
14.56 ReproCELL
14.56.1 Services
14.56.2 Products
14.57 RHEINCELL Therapeutics GmbH
15.57.1 GMP-Grade iPSC Products
15.57.2 Services
14.58 TEMCELL Technologies
14.58.1 Products
14.59 Stemina Biomarker Discovery
14.59.1 Cardio quickPredict
14.59.2 devTOX quickPredict
14.60 Synthego Corp.
14.60.1 CRISPR-Edited iPSCs
14.61 System Biosciences (SBI)
14.61.1 Products
14.62 Takara Bio
14.62.1 Stem Cell Research Products
14.63 Takeda Pharmaceutical Co., Ltd.
14.63.1 Collaboration between CiRA and Takeda
14.63.2 FUJIFILM’s Collaboration with Takeda
14.64 Tempo Bioscience
14.64.1 Human Cell Models
14.65 Thermo Fisher Scientific, Inc.
14.65.1 Products for Stem Cell Culture
14.65.2 Products for Stem Cell Characterization
14.65.3 Products for Stem Cell Engineering
14.66 TreeFrog Therapeutics
14.66.1 C-Stem Technology
14.67 VistaGen Therapeutics, Inc.
14.67.1 CardioSafe 3D
14.68 Waisman Biomanufacturing
14.68.1 GMP iPSCs
14.69 xCell Science, Inc.
14.69.1 Control Lines
14.69.2 Products
14.69.3 Services
14.70 Yashraj Biotechnology, Ltd.
14.70.1 Products and Services for Drug Discovery

List of Figures

- Figure 2.1: The Share of iPSC-related Research Compared with other Stem Cell Types
- Figure 2.2: Major Focuses of iPSC Companies
- Figure 2.3: Commercially Available iPSC-Derived Cell Types
- Figure 2.4: Relative Use of iPSC-Derived Cell Types in Toxicology/Safety Testing Assays
- Figure 2.5: Toxicology/Safety Testing Assays using iPSC-Derived Cell Types
- Figure 3.1: CiRA’s Budget of ¥6.37 Billion
- Figure 4.1: Number of Research Publications on iPSCs in PubMed.gov, 2006-2020
- Figure 4.2: Percent Share of Published Articles by Research Themes
- Figure 4.3: Percent Share of Published Articles by Disease Type
- Figure 4.4: Percent Share of iPSC Research Publications by Country
- Figure 5.1: Number of Patents Granted, Being Sought and “Dead”
- Figure 5.2: Patent Families by Filing Jurisdiction
- Figure 5.3: Patent Families by Applicant Origin
- Figure 5.4: Top Ten Global Applicants
- Figure 5.5: Top Ten Global Collaborators on PSC/iPSC Patents
- Figure 5.6: Share of Patents on iPSC Preparation Technologies by Geography
- Figure 5.7: Percent Share of iPSC Preparation Methods in the U.S., Japan and Europe
- Figure 5.8: Percent Share of Patents Related to Cell Types Differentiated from iPSCs
- Figure 5.9: Percent Share of Patent Applications for Disease-Specific Cell Technologies
- Figure 5.10: Percent Share of Patents Representing Different Disorders
- Figure 6.1: Number of Clinical Trials Involving iPSCs by Year, 2006-2020
- Figure 6.2: Clinical Trials Involving iPSCs by Major Diseases
- Figure 6.3: Clinical Trials Involving iPSCs by Country
- Figure 7.1: Number of NIH Funding for iPSC Projects, 2010-2020
- Figure 7.2: Value of NIH Funding for iPSCs by Year, 2010-2020
- Figure 8.1: Overview of iPSC Technology
- Figure 8.2: Generation of iPSCs from MEF Cultures through 24 Factors by Yamanaka
Figure 8.3: The Roles of OSKM Factors in the Induction of iPSCs
Figure 8.4: Schematic Representation of Delivery Methods for iPSCs Induction
Figure 8.5: Overview of Four Key Methods of Gene Delivery
Figure 9.1: Workflow in iPSC Banks
Figure 10.1: Biomedical Applications of iPSCs
Figure 10.2: Relative Use of iPSC-Derived Cell Types in Toxicity Testing
Figure 10.3: A Schematic for iPSC-Based Disease Modeling
Figure 10.4: Proportion of iPSC Cell Lines Generated by Disease Type
Figure 10.5: Proportion of iPSC Sources in Cardiac Studies
Figure 10.6: Proportion of Vector Types used in Reprogramming
Figure 10.7: The Proportion of Differentiated Cardiomyocyte Types
Figure 10.8: Schematic for iPSC-Based Cell Therapy
Figure 11.1: Schematic Representation of Printing Techniques used for iPSC Bioprinting
Figure 11.2: Schematic Showing the use of iPSCs in Protecting Endangered Species
Figure 11.3: Funding raised by Cultured Meat Companies, 2016-2019
Figure 11.4: Estimated Global Market for Cultured Meat, 2023-2030
Figure 13.1: Estimated Global Market for iPSCs by Geography through 2026
Figure 13.2: Estimated Global Market for iPSCs by Technology through 2026
Figure 13.3: Estimated Global Market for iPSCs by Biomedical Application through 2026
Figure 13.4: Estimated Global Market Share for Differentiated Cell Types, 2020
Figure 14.1: Comparison of Conventional Meat Production and Cultured Meat Production

List of Tables

Table 2.1: Commercially Available iPSC Technologies
Table 2.2: Advantages and Limitations of iPSC Technology
Table 3.1: Timeline of the Most Important Milestones in iPSC Research, 2006-2019
Table 4.1: Number of Research Publications on iPSCs in PubMed.gov, 2006-2020
Table 5.1: Patent Families by Filing Jurisdiction
Table 5.2: Patents Granted and Patents Pending in the Global Patent Landscape
Table 6.1: Clinical Trials involving iPSCs as of March 2020 48 49 50 51 52 53
Table 7.1: NHI’s Intended Funding Through its Component Organizations in 2020
Table 7.2: NIH Funding for Select Universities/Organizations for iPSC Studies 59
Table 7.3: CIRM Funding for Clinical Trials Involving iPSCs 61
Table 8.1: The Characterization of iPSCs
Table 8.2: Reprogramming Factors used in the Generation of iPSCs
Table 8.3: Different Cell Sources and Different Combinations of Reprogramming Factors
Table 8.1: Comparative Effectiveness of Different Vector Types
Table 8.2: iPSC Disease Models using Isogenic Control Lines Generated by CRISPR/Cas9
Table 9.1: Cell Sources and Reprogramming Agents used in iPSCs Banks
Table 9.2: Diseased iPSC Lines Available in CIRM Repository
Table 9.3: CIRMS' iPSC Initiative Awards
Table 9.4: Research Grade iPSCs Available with RMP
Table 9.5: Research Grade iPSC Lines for Orphan and Rare Diseases Available with RMP
Table 9.6: SCTL's Collaborations
Table 9.7: A Partial List of iPSC Lines Available with EBiPC
Table 9.8: List of Disease-Specific iPSCs Available with RIKEN
Table 9.9: An Overview of iPSC Banks Worldwide
Table 10.1: Providers of iPSC Cell Lines and Parts Thereof for Research
Table 10.2: Comparison of hiPSC-Based & Animal-Based Drug Discovery
Table 10.3: Drug Discovery for Cardiovascular Diseases using iPSCs
Table 10.4: Drug Discovery for Neurological and Neuropsychiatric Diseases using iPSCs
Table 10.5: Drug Discovery for Rare Diseases using iPSCs
Table 10.6: Examples of Drug testing in iPSC-Derived Disease Models
Table 10.7: Published Human iPSC Disease Models
Table 10.8: Partial List of Cardiovascular and Related Diseases Modeled with iPSCs
Table 10.9: iPSC-Derived Organoids for Modeling Development and Disease
Table 10.10: Liver Diseases and Therapeutic Interventions Modeled using iPSCs
Table 10.11: Examples of iPSC-Based Neurodegenerative Disease Modeling
Table 10.12: Cancer-Derived iPSCs
Table 10.13: Clinical Trials for the Therapeutic Application of iPSC Derivatives, 2013-2019
Table 10.14: U.S. Clinical Trials Involving iPSCs
Table 11.1: Features of Different Bioprinting Techniques
Table 11.2: Bioprinting of iPSC-Derived Tissues
Table 11.3: Timeline of Achievements Made using iPSCs for Conservation of Animals
Table 11.4: Companies Working on Meat Production based on Cellular Agriculture
Table 13.1: Estimated Global Market for iPSCs by Geography, 2019-2026
Table 13.2: Estimated Global Market for iPSCs by Technology, 2019-2026
Table 13.3: Estimated Global Market for iPSCs by Biomedical Application, 2019-2026
Table 13.4: Estimated Global Market for iPSCs by Differentiated Cell Types, 2019-2026
Table 14.1: iPSC Cell Lines from CET
About BioInformant

BioInformant is the first and only market research firm to specialize in the stem cell industry.

BioInformant research has been cited by prominent news outlets that include the Wall Street Journal, Nature Biotechnology, Xconomy, and Vogue Magazine.

Serving Fortune 500 companies that include Pfizer, Goldman Sachs, and GE Healthcare, BioInformant is your global leader in stem cell industry data.